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We consider the flow of two immiscible fluids lying between concentric cylinders when 
the outer cylinder is fixed and the inner one rotates. The interface is assumed to be 
concentric with the cylinders, and gravitational effects are neglected. We present a 
numerical study of the effect of different viscosities, different densities and surface 
tension on the linear stability of the Couette flow. Our results indicate that, with 
surface tension, a thin layer of the less-viscous fluid next to either cylinder is linearly 
stable and that it is possible to have stability with the less dense fluid lying outside. 
The stable configuration with the less-viscous fluid next to the inner cylinder is more 
stable than the one with the less-viscous fluid next to the outer cylinder. The onset 
of Taylor instability for one-fluid flow may be delayed by the addition of a thin layer 
of less-viscous fluid on the inner wall and promoted by a thin layer of more-viscous 
fluid on the inner wall. 

1. Introduction 
We consider linear stability of the flow of two immiscible fluids separated by an 

interface, lying between concentric rotating cylinders. In  each fluid, the Navier-Stokes 
equations for steady flow are assumed to hold. If we prescribe the ratio of the total 
volume occupied by each fluid, then the interface is an unknown, across which the 
velocity and normal and shear stresses are to be continuous. If the fluids have equal 
or nearly equal densities, then a continuum of interface positions are allowed (Joseph, 
Renardy & Renardy 1984). However, this non-uniqueness is not borne out by the 
experiments of Joseph, Nguyen & Beavers (1984), hereinafter referred to as JNB. 
They use water and various oils as the two fluids in an apparatus with the outer 
cylinder fixed (see figures 26-30, JNB). When the inner cylinder is rotated a t  even 
moderate speeds, gravity effects appear negligible and a pattern consisting of two 
types of cells is usually observed. One type consists mostly of oil rollers stuck to 
the inner cylinder and rotating almost like a solid body, lubricated by a thin layer 
of water at the outer cylinder. The second type consists mainly of water cells 
undergoing Taylor-vortex motions. These cells extend from the inner to the outer 
cylinder, but, in some experiments, are covered by a thin layer of oil a t  the outer 
cylinder. The two types of cells alternate along the length of the cylinder. This flow 
is one of many steady bicomponent flows where a study of the selection mechanism 
for the arrangement of the fluids must be made. At the same time, systematic 
experiments must be performed since the experiments of JNB are not sufficiently 
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quantitative to allow a direct comparison with the theory presented here. However, 
some qualitative features of their experimental results are correlated with our results 
of $4. One correlation is the thin lubrication layer of water described above. The 
stability of this arrangement is consistent with our calculations which indicate that 
we may observe a very thin layer of the less viscous fluid lying next to either the 
inner or the outer cylinder. Another correlation is the observation of the water cells 
covered at the outer cylinder by a layer of oil, as illustrated in Fig. 31 (c) of JNB. 
In this arrangement the denser fluid lies next to the inner cylinder whereas intuition 
suggests that the denser fluid should be the outer fluid. An explanation is required 
as to why this adverse density difference is observed, and to this end we present a 
theoretical situation in $4 where an arrangement with an adverse density difference 
is stabilized by a combination of surface tension and a favourable viscosity difference. 

One way to study selection is to study stability, and in this paper we study stability 
by computing eigenvalues for the spectral problem associated with the linear theory. 
The equations for our numerical computations are given in $2. Some asymptotic 
results for short waves are presented in $3, following the ideas of Hooper & Boyd 
(1983). They consider unbounded Couette flow, but their method of analysis applies 
locally at  any interface with a viscosity jump. Hooper & Boyd showed that in the 
absence of surface tension the flow is unstable to sufficiently short waves which have 
wave vectors parallel to the basic flow. The growth rates of these disturbances, 
however, tend to zero as the waves get shorter. They found that these short-wave 
instabilities are not suppressed by viscosity as they are in one-fluid flows, but by 
surface tension. A density difference can stabilize or destabilize them, but not as 
effectively as surface tension. In $3 we have given a similar analysis for disturbances 
whose wave vectors are perpendicular to the basic flow. Our results include surface 
tension, density difference and centrifugal effects. We have correlated our numerical 
results with the asymptotic formulas. 

When surface tension is effective, the longer waves can cause instability, and, if 
periodic boundary conditions are imposed, then this yields a familiar type of 
instability in which the interaction of a finite number of modes determines what type 
of solutions bifurcate from the unstable one (Renardy & Joseph 1984). However, when 
surface tension is not effective, then we have an unusual instability in which the flow 
is unstable to all short waves below a certain critical size. This type of instability 
may play a role in the formation of emulsions. 

In $4 we give numerical results for two situations: low Reynolds numbers and 
Taylor numbers near a critical value. We find that in the preferred configurations 
a thin layer of the less-viscous fluid may lie next to either cylinder. Our results 
contradict the selection principle based on minimizing the viscous dissipation in the 
restricted class of annular layers of two fluids which do not vary along the axis of 
the cylinder. The solution of this minimization problem (JNB) consists of the 
less-viscous fluid lying on the inner cylinder, no matter which cylinder rotates. In 
fact, our numerical results indicate that a narrow stable layer of the less-viscous fluid 
on the inner cylinder is ‘more’ stable than that on the outer cylinder. It is also of 
interest that the instability leading to Taylor vortices in one-fluid flows may be 
nullified by adding a lubrication layer of the less-viscous fluid at the inner cylinder 
and that instability may be created by adding a thin layer of more-viscous fluid at 
the inner cylinder. 
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2. Stability equations and numerical solution 
We use cylindrical coordinates (r*,B,z*),  where the z* axis is the axis of two 

concentric cylinders. The inner cylinder has radius R, and angular velocity Q,. The 
outer cylinder has radius R, and angular velocity a,. We consider the stability of 
a circular Couette flow of two fluids lying between the cylinders. The unperturbed 
interface is at radius D. We refer to the fluid occupying R, < r* < D as the ‘inner’ 
fluid and use subscript 1 for its fluid properties. The fluid occupying D < r* < R, is 
referred to as the ‘outer’ fluid and we use subscript 2 for its properties. The viscosities 
and densities of the fluids are ,ut and pi for i = 1 ,2 .  

We introduce the following dimensionless variables (asterisks here denote dimen- 
sional variables) : 

U* P* ’ t=t*Q,, u=-  , p=- 
Rl Q, Rl P l Q X  

@*, z*)  ( r , z )  = ___ 

The unperturbed flow has an azimuthal velocity field given by &(r) = A, r + BJr,  
i = 1,2, where 

where v = ,u/p. Primes denote differentiation with respect to r. Incompressibility 
yields 

The flat interface r = D / R ,  is also perturbed with the factor exp ( - i d  + iaz + in@, 
and the following linearized conditions hold at r = D / R ,  (see Joseph et al. 1985). 
[r ] denotes the difference ( 

(ru)’ + inw + riaw = 0. (4) 

( )2  across r = D/R, .  
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(i) Continuity of velocity : 

bun = 0, Ewi = 0, 

R2 
0 2  

[v] =‘Zu[B]’. 

(ii) Continuity of shear stresses and balance of normal stress by surface tension : 

iau[p] + [w’p] = 0, 

where S is the surface tension and V denotes the basic velocity at the unperturbed 
interface. Boundary conditions at the solids are 

u = 0, v = 0, w = 0 at r = 1, R2/R, .  

We now describe our discretization scheme. Equations (1) and (4) are used to 
eliminate w and p from (2) and (3). A Chebyschev-polynomial expansion (Orszag 197 1) 
is used for u, v, w and p .  If n + 1 and n Chebyschev polynomials are used for u and 
v respectively, then the total number of unknowns is 4n+2. Equation (2) can then 
be truncated after the (n-4)th degree because of the presence of r4uiv and 1.3~”. 
Equation (3) should be truncated after the (n-3)th degree because of the presence 
of rSum and r2v”. The resulting system of linear equations for -a were solved with an 
IMSL routine on a VAX/VMS 11/780 in complex double precision. The computations 
were checked against table 2 of Krueger, Gross & DiPrima (1966), Hooper & Boyd’s 
asymptotics for large n and the asymptotics in $3 for large a. 

When the two fluids are identical, the presence of the interface introduces a 
neutrally stable eigenvalue for each n and a (called the ‘interfacial’ eigenvalue by 
Yih 1967) in addition to the eigenvalues for one-fluid flow (called ‘Taylor’ eigenvalues 
in $4). In  $4 we track the behaviour of the interfacial and Taylor eigenvalues as the 
viscosities, densities, surface tension and volume ratio are changed. 

3. Asymptotic analysis for short-wave disturbances 
Hooper 6 Boyd (1983) restrict their asymptotic analysis to two dimensions with 

coordinates (2, y), where x is the direction of the stream. They consider disturbances 
in normal modes proportional to exp (iax) for large a or short waves, and expand the 
stream function and the interfacial eigenvalue in powers of l/a2. The perturbation 
problems which arise from this procedure are uniquely solvable. Since our stream is 
in the azimuthal direction, we must replace a by n. The results of Hooper & Boyd 
apply when n is large and centrifugal effects are neglected. Centrifugal effects 
considered here, however, play the same role as gravity in their analysis. (We note 
that a factor a should multiply the gravity term below (16) in their paper.) For large 
n we find that 
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where 

) F =  V2(D/R,) 52, D2 
b = ( 2 B l ~ y  2bB, v2 ’ 

P1 

P2 
y = - .  

DbS 
K =  

2 4  rul 521 RI ’ 
The parameter F measures the centrifugal force and K is a surface-tension parameter. 
The parameterfcontains the terms in the expression for the growth rate (Im (g)) that 
depend on n. We note that this formula was obtained by taking a distinguished limit 
assuming that the term f remains of order 1 for large n. Hence if either nF or n3K 
becomes large the dominant terms in (5 )  yield the asymptotic behaviour, but the 
remaining terms in (5 )  cannot be interpreted as the correction terms of lower order 
in n. Moreover, if surface tension is not zero the term n3K eventually dominates the 
asymptotic formula when n is large enough so that it effectively suppresses short 
waves. 

We can also do short-wave asymptotics for disturbances perpendicular to the 
( r ,  @-plane. We consider axisymmetric (n  = 0) disturbances and introduce the 
following dimensionless variables : 

a, b(r* - D )  
D 

2B, t*Q, RI bz * 
, z=- 

0 2  D ’  
, T =  R =  

Assuming now that the disturbance is proportional to exp (ia, CT+ idl Z), this 
transformation yields the following six conditions at R = 0 as ul+ co : 

[un = 0, 

= 

rrunu+[ru$] = 0, 

-ia,C[w] = u(1-m),  

= 0) 

L = - - l ,  d2 f = a ,  - F ( y - l ) - K a : .  
dR2 m 

where 

The equations of motion and continuity with d/de = 0 are now expanded about 
R = 0 for large a,, and, as in the analysis of Hooper & Boyd, u - uo+ul/a: ..., 
a, C - co + c, /a:  . . .) where the zeroth-order velocity satisfies L3u0 = 0 in each fluid. 
We find that c1 is determined by uo, where 

eR(a,+a, R+a2 R2) for R < 0, 
u o = {  e-R(bo + b, R + b, R2) for R > 0. 
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To leading order, 

and 
a ,2BlR: [  ( a 3 ~  sty iCv, au 

ru - - -  +---. P1 D2 aR3 aR SZ,R:aR p1 [Ipn - 
Five of the coefficients in uo can be found in terms of the sixth by using the interface 
conditions (6), (7) and (9)-(11). Condition (8 )  yields co = 0 and an equation for c , :  

As with the large-n asymptotics, this formula was obtained by assuming that the 
terms in f remain of order 1 for large al .  

From ( 1 2 )  we find that 

i(1-m) 3 V ( D / R 1 ) D ( y - m ) m  2fm 
c1 = 4 ( l + m ) (  2 B , R , ( m + l ) y  +-)% l - m  

4. Numerical results 
We compute the growth and decay rates Im (g) for the stability of Couette flow 

of two fluids. We consider two flow regimes. The first, treated in $94.1 and 4.2, is flow 
at small Reynolds numbers. Here, if either fluid filled the flow, the one-fluid flow would 
be linearly stable. The only mode that can become linearly unstable for the two-fluid 
flow is the interfacial mode. The second, treated in 54.3, is flow at higher Reynolds 
numbers, where, if the outer fluid filled the flow, the one-fluid flow would be at a 
critical Taylor number where linear stability is lost. Here, in addition to the 
interfacial eigenvalues, the eigenvalues associated with the one-fluid flows can become 
unstable. This type of loss of stability leads to bifurcation and, finally, to the 
tesselation of stable (highly viscous) and unstable (Taylor cells in the low-viscosity 
liquid) regions observed in the experiments of JNB. For each flow regime, we 
determine which arrangement of the components is stable and the volume ratios of 
the stable configurations. 

4.1. Stability of Couette $ow of two Jluids for low speeds neglecting 
surface tension and density difference 

We compute the growth rates for the following range of variables: 

a ranges from 0.01 to  50 and n from 0 to  50. From now on we shall call the less-viscous 
fluid ‘thin’ and the more-viscous fluid ‘thick’. Under these conditions we find that 
the configuration with a sufficiently thin layer of the less-viscous fluid, situated next 
to either cylinder, is stable. 

The response to long waves (small a and low n) is as follows. The axisymmetric 
mode becomes insignificant as a+O, since in that limit there is no disturbance. For 
a < 0.1 and small Reynolds numbers Re = Dl R:/v  the growth rate Im (c) is 
proportional to  a2Re when n = 0 and to Re when n =+ 0. The growth rates in this 
asymptotic range are shown in figures 1 and 2 .  I n  figure 1 the thin fluid is situated 
next to the inner cylinder, and hence the modes displayed are stable (Im (c) < 0) if 
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FIGURE 1. Growth rate versus interface position with azimuthal wavenumber n as a parameter. 
S = 0, y = 1, m = 0.4. The thin fluid is on the inner cylinder. Negative Im (a) corresponds to 
stability. When surface tension is absent the flow is unstable a t  any D ( +  R, or R,) if n is large 
enough. Mode 0 is insignificant under graph scales. 

a = 0.1 

t 
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FIQURE 2. Growth rate versus interface position when the thin fluid is on the outer cylinder. S = 0, 
y = 1, m = 2. The stable modes near the outer cylinder have less stability than the stable modes 
near the inner cylinder (cf. figure 1) because. the decay rates of stable disturbances are much smaller. 
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a =  1.0 
0.005 I I I I I I I I I 

0.004 - - 

- 

- 
- 4  

-0.003 1 I I I I I I I I 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
Interface radius (D/R , )  

FIGURE 3. Growth-rate curves when the thin fluid is inside. S = 0, y = 1, m = 0.4. 

a =  1 
4.0 I I I I I I I 1 I I I 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
Interface radius (D/R, )  

FIGURE 4. Growth-rate curves when the thin fluid is outside. S = 0, y = 1, m = 2. The decay 
rates of stable disturbances are an order of magnitude smaller than in figure 3. 

the interface is close enough to  r = 1. The situation is reversed in figure 2. I n  both 
figures modes 10 and 20 show the short-wave asymptotic behaviour in which the 
stable range of interface positions, as well as the maximum growth rates, diminish 
with n (or a). Disturbances of the stable configurations with the thin fluid inside have 
much larger decay rates than that with thin fluid outside. 
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FIGURE 5. Growth rates when the thin fluid is inside. S = 0, y = 1, m = 0.4. 

Trends similar to those exhibited in figures 1 and 2 are exhibited in figures 3 and 4 
for a = 1.0. The stable range of interface radii is slightly, but not greatly, reduced. 
Figure 4 clearly shows that for rn = 2 the dependence of Im (a) on 12 at modes 20 and 
40 scales with l /n2  over most of the interface positions. In  both figures the relative 
errors of the asymptotic values at D / R ,  = 1.5 fall from about 50 yo at mode 9 to 8 Yo 
at mode 20. 
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Figures 5 and 6 give growth rates for a = 10. For mixed small values of n and large 
a, (13) yields 

I n  figures 5 and 6 modes n = 1-3 lie in between modes 0 and 4 ,  and the growth 
rates of all the modes between 0 and 4 are numerically close. These figures display 
some qualitative features of large-a asymptotics, but a = 10 is not high enough to 
be in the short-wave asymptotic range for m = 0.4 or 2. I n  addition, the larger the 
viscosity difference m, the lower is the value of a at  which this asymptotic range is 
attained. For example, at m = 6 the relative errors range from 30 yo at a = 10, 16 yo 
at a = 20 and 8% at a = 40, whereas a t  m = 2 (figure 6 )  these errors are doubled, 
and a t  m = 0.4 (figure 5 )  they are quadrupled. As noted by Hooper & Boyd, the 
short-wave asymptotics break down when the interface is too close to either cylinder. 

From our computations, we conclude that the largest growth and decay rates arise 
in the order-one range of a for medium n and for small m. For example, mode 9 at 
a = 1, m = 0.2 attains three times the growth rate attained at m = 0.4 (figure 3), and, 
in turn, that  mode a t  m = 0.4 attains a larger magnitude than at m = 2 (figure 4 ) .  
We may also conclude from a comparison of decay rates that the stable flows with 
thin fluid inside are ‘more’ stable than those with thin fluid outside. 

4.2. Stability of Couette flow of two fluids for low speeds: the influence of surface 
tension and density differences 

Surface tension stabilizes short-wave interfacial disturbances and destabilizes longer 
waves. Centrifugal forces, in the absence of surface tension, will produce stability if 
the more-dense fluid is outside. However, with surface tension, i t  is possible to achieve 
stability when the denser fluid is inside. This can, of course, only happen if the 
centrifugal force is not too large and gravity is neglected. Under these conditions, if 
surface tension is large enough to stabilize the short waves but not so large that the 
long waves are unstable, then stability is possible at all a and n with the denser fluid 
inside. One example is y = 2, m = 2, D / R ,  = 1.9, v2/52, RT = 1, F = 0.00034745, and 
K = 0.592. Figure 7 shows a graph of -1m (a) versus a, showing stability. Figure 8 
shows a graph of Im (a) versus a a t  zero surface tension, showing that modes become 
unstable for large a. 

4.3. Stability of Couette flow of twofluids near a critical Taylor number: 
zero surface tension and density difference 

We recall some properties of the classical Taylor problem for one fluid for which a 
Taylor number is defined as 

T, = 4AQ2,(R2- R l ) 4 / ~ ,  

where A = (52, RT-52, R i ) / ( R ; -  Rg). For low T, the flow is linearly stable. As T, is 
increased, the first mode to become unstable is the axisymmetric mode n = 0. As T, 
is increased further the higher modes (n  > 0) successively become unstable. In this 
subsection we study the onset of instability for two-fluid flows by fixing properties 
of the outer fluid so that the axisymmetric mode is at criticality if the entire flow 
is occupied by that fluid (i.e. DIR, = 1). We focus on the effect of viscosity 
stratification and neglect surface tension and density difference effects. Krueger 
et al. (1966) calculated a critical Taylor number for one-fluid flow with the outer 
cylinder fixed as satisfying T,(R,/R,)2 = 1549.59 and a = 3.16R1. Thus, in our calcula- 
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FIGURE 7 .  Decay rates for the situation with the more-dense fluid in the inner region. 
K = 0.592, F = 0.00034745, y = 2, m = 2. All modes are stable. 

DIR, = 1.9 

I I I I I I I I 

0 2 4 6 8 10 12 14 16 18 20 
& 

FIGURE 8. Growth rates for flows shown in figure 7 when surface tension is zero. F = 00034745, 
K = 0, y = 2, m = 2. All modes are unstable to sufficiently small (large-a) disturbances. 

tions, we set RJR, = 2, a = 3.16 and v2/sZ, R: = 0.0148, so that Im (u) for the 
axisymmetric mode is zero when DIR, = 1. I n  each of figurep 9-12 the viscosity 
ratio m is different, and we study the growth rate as the interface position is varied. 

We consider two situations: with the thin fluid at the outer (m > 1, figures 9 
and 10) or a t  the inner (m < 1, figures 11 and 12) cylinder. Intuition would suggest 
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Im 

FIGURE 9. Growth rates when the thin fluid lies next to the outer cylinder. AS = 0, y = 1, m = 1.08. 
The amount of thin fluid decreases as D increases but various modes are unstable except when most 
of the gap is occupied by the thick fluid. At DIR, = 1 mode 0 is a t  a critical Taylor number and 
mode 1 is slightly below. 

01=3.16 
0.2 I I I I I 1 I I I 
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-0.2 - 

-0.3 - 

-0.4 I I I I I I I I I 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
Interface radius (D/R 1) 

-0.4L I I I I I I I I I 1 

Interface radius (D/R 1) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

FIGURE 10. Growth rates when the thin fluid is outside. S = 0, y = 1, m = 2. The flow is stable 
when the thick fluid fills the annulus ( D / R l  = R , / R ,  = 2 )  and is a t  criticality when thin fluid fills 
i t  ( D / R ,  = 1). However, the addition of thick fluid at the inner cylinder can actually destabilize 
the flow unless the thick fluid occupies most of the annulus. 
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-0.06L I I I I I 1 I I I 1 
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

Interface radius (D/R,)  

FIGURE 11.  Growth rates for various modes when the parameters are close to critical for Taylor 
instability. S = 0, y = 1, m = 0.9. Thick fluid lies next to the outer cylinder. The addition of thin 
fluid at the inner cylinder surprisingly stabilizes the flow. 

that when m > 1 the flow will become more and more stable as D increases because of 
the presence of increasingly larger amounts of the thick (stable) fluid. This expectation 
is not realized. Figures 9 and 10 show that various modes become unstable as thick 
fluid is added. Similarly, intuition would suggest that when m < 1 we should have 
instability for increasing D because more and more thin fluid replaces thick fluid. 
Figures 11 and 12 show that we actually stabilize the flow by adding thin fluid near 
the inner wall. This stabilization is associated with the stability of narrow layers and 
could be called ‘lubrication’ stabilization associated with the layer of thin fluid on 
the inner cylinder. In  figure 11 mode 0 is unstable if the inner fluid occupies the entire 
flow. In figure 12 both modes 0 and 1 are unstable if the inner fluid occupies the entire 
flow. 

A new feature close to or above a critical Taylor number is that the Im (a) for the 
interfacial eigenvalue need not be single-valued. That is, the graph of Im (a) versus 
D / R ,  for an interfacial eigenvalue that begins at D = R, with Im (a) = 0 can proceed 
to match to  a Taylor eigenvalue at  D = R,, and a second branch satisfying Im (a) = 0 
at D = R, can match to a Taylor eigenvalue at D = R,. Figures 9 and 12 show mode 1 
to have such branches. In figure 12 the Taylor eigenvalue for mode 1 is unstable 
at D = R,, and in figure 9 it is stable at  D = R,. The behaviour of the higher (n > 1) 
modes, for which the Taylor modes are very stable, is as described in $4.1. 

For n = 0 the equations yield a real-valued problem for ia, ip, iu, iw and iw. Hence 
ia is either a real number or appears in complex-conjugate pairs. In  the latter case 
the eigenvalues have equal imaginary parts. This behaviour is shown in figures 9-12. 
For example, in figure 11, for 1 < D / R ,  < 1.3, the n = 0 eigenvalues are in conjugate 
pairs. Near D/R, = 1.3, Im (a) splits. One branch becomes increasingly unstable, and 
at  D = R, is the unstable Taylor eigenvalue for one-fluid flow with u = 0.0132. The 
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Irn 

0.25 

0.20 

0.15 I 
I 

Interface radius (D/R ,) 
FIGURE 12. Growth rates with thick fluid outside. S = 0, y = 1, m = 0.4. Note the stabilization by 
a ‘lubrication’ effect associated with putting a thin layer of less-viscous fluid on the inner cylinder. 
At  I > / R ,  = 1 mode 0 is at a critical Taylor number and mode 1 is slightly below. 

second branch becomes stable for 1.3 < D / R ,  < 2, and, since Im (a) = 0 at  D = R,, 
this branch is the interfacial eigenvalue. 
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